IBDP Mathematics Analysis and approaches (SL) Formula sheet

Prior learning		Topic 1 Number and algebra		
Area of a	A = bh	The n th term of A.S.	$u_n = u_1 + (n-1)d$	
parallelogram	b = base, h = height			
Area of a triangle	$A = \frac{1}{2}bh$	The sum of n terms of A.S.	$S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$	
Area of a trapezoid	$A = \frac{1}{2} (a + b)h$	The n th terms of G.S.	$u_n = u_1 r^{n-1}$	
	a, b = parallel sides, h = height			
Area of a circle	$A = \pi r^2$, r is radius	The sum of n terms of G.S.	$S_n = \frac{u_1(r^{n}-1)}{r-1} = \frac{u_1(1-r^n)}{1-r}$, $r \neq 1$	
Circumference of a circle	$C = 2\pi r, r \text{ is radius}$	The sum of an infinite G.S.	$S_{\infty} = rac{u_1}{1-r}$, $ r < 1$	
Volume of a cuboid	V = lwh	Exponents and logarithms	$a^x = b \iff x = \log_a b$	
Volume of a	$V = \frac{1}{2}$ x base area x vertical height		$log_c a + log_c b = log_c ab$	
pyramid or cone	3		$log_a - log_b = log_a - \frac{a}{a}$	
		Logarithms	$\log_{c} a^{r} \log_{c} b$	
			$log_c a^r = rlog_c a$	
			$\log_b a = \frac{\log_b}{\log_c b}$	
Volume a cylinder	$V = \pi r^2 h$	Binomial coefficient	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$	
Volume of a prism	V = Ah, where A is the area of	Binomial theorem	$(a+b)^n =$	
	cross-section, h is the height		$a^n + \binom{n}{1}a^{n-1}b + \binom{n}{r}a^{n-r}b^r + \dots + b^n$	
Area of the curved	$A = 2\pi r h$	Compound interest	$FV = PV \times \left(1 + \frac{r}{r}\right)^{kn}$ where	
surface of a			FV = future value PV = present value	
cylinder			n = number of years k = number of	
			compounding periods per year $r\%$ =	
			nominal annual rate interest	
Two points distance	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	Topic 3 Geometry and trigonometry		
Midpoint	$\begin{pmatrix} x_1 + x_2 & y_1 + y_2 \end{pmatrix}$	Arc length	$l = r\theta$, where θ is in radians	
•			1	
Topic 2 Functions		Sector area	$A = \frac{1}{2}r^2\theta$, where θ is in radians	
Straight line	$m = \frac{y_2 - y_1}{z_1 - z_1}$	Cosine rule	$c^2 = a^2 + b^2 - 2ab\cos C$	
gradient	$x_2 - x_1$		$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$	
Straight line	y = mx + c ; ax + by + d = 0	Sine rule	a b c	
equation			$\overline{\sin A} - \overline{\sin B} - \overline{\sin C}$	
Axis of symmetry	$f(x) = ax^2 + bx + c \rightarrow x = \frac{-b}{2a}$	Area of a triangle	$A = \frac{1}{2}absin C$	
Quadratic formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , a \neq 0$	Surface area of a sphere	$A = 4\pi r^2$	
Discriminant	$\Delta = b^2 - 4ac$	Curved surface area of a cone	$A = \pi r l$, where l is the slant height	
Exponents and	$a^x = e^{x \ln a}$; $log_a a^x = x = a^{log_a x}$	Volume of a sphere	$V = \frac{4}{2}\pi r^3$	
logarithms			3	
		Identity for $\tan \theta$	$\tan\theta = \frac{\sin\theta}{\cos\theta}$	
		Pythagorean identity	$\cos^2\theta + \sin^2\theta = 1$	
		Double angle identities	$\sin 2\theta = 2\sin\theta\cos\theta$	
			$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	
			$= 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$	
Book a free trial lesson! 1				

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

Topic 4 Statistics and probability		Topic 5 Calculus	
Mean of a set of data	$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$, where $n \sum_{i=1}^{k} f_i$	Derivative of x^n	$f(x) = x^n \rightarrow f'(x) = nx^{n-1}$
Interquartile range	$IQR = Q_3 - Q_1$	Derivative of sin x	$f(x) = \sin x \rightarrow f'(x) = \cos x$
Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$	Derivative of cos x	$f(x) = \cos x \rightarrow f'(x) = -\sin x$
Complementary events	P(A) + P(A') = 1	Derivative of tan x	$f(x) = \tan x \rightarrow f'(x) = \frac{1}{\cos^2 x}$
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Derivative of e^x	$f(x) = e^x \to f'(x) = e^x$
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$	Derivative of ln x	$f(x) = \ln x \rightarrow f'(x) = \frac{1}{x}$
Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$	Chain rule	$y = (f(x))^{n}$ $\rightarrow \frac{dy}{dx} = n(f(x))^{n-1} x f'(x)$
Independent events	$P(A \cup B) = P(A)P(B)$	Product rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
Expected value of a discrete random variable <i>X</i>	$E(X) = \sum x P(X = x)$	Quotient rule	$y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
Standardized	$z = \frac{x - \mu}{2}$	Velocity	$n = \frac{ds}{ds}$
normal variable	σ	Acceleration	$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$
Binomial	$X \sim B(n, p)$		$\int x^n dx = \frac{x^{n+1}}{1 + C} + \frac{1}{2} + \frac{1}{2}$
distribution	$\rightarrow P(X = r) = {n \choose r} p^r (1 - p)^{n - r}$ $E(X) = np$	Standard integrals	$\int x dx = \frac{1}{n+1} + C, n \neq 1$ $\int \frac{1}{x} dx = x + C$
Mean			$\int \sin x dx = -\cos x + C$
Variance	Var(x) = np(1-p)		$\int \cos x dx = \sin x + C$ $\int e^x dx = e^x + C$
		Area under a curve between x = a and $x = b$	$A = \int_{a}^{b} y dx$
		Distance travelled from t_1 to t_2	$Distance = \int_{t_1}^{t_2} v(t) dt$
		Displacement from t_1 to t_2	$Displacement = \int_{t_1}^{t_2} v(t) dt$